telegraf/plugins/inputs/intel_powerstat/intel_powerstat.go

702 lines
22 KiB
Go
Raw Normal View History

//go:build linux
// +build linux
package intel_powerstat
import (
"fmt"
"math/big"
"strconv"
"strings"
"sync"
"time"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/plugins/inputs"
)
const (
cpuFrequency = "cpu_frequency"
cpuBusyFrequency = "cpu_busy_frequency"
cpuTemperature = "cpu_temperature"
cpuC0StateResidency = "cpu_c0_state_residency"
cpuC1StateResidency = "cpu_c1_state_residency"
cpuC6StateResidency = "cpu_c6_state_residency"
cpuBusyCycles = "cpu_busy_cycles"
packageCurrentPowerConsumption = "current_power_consumption"
packageCurrentDramPowerConsumption = "current_dram_power_consumption"
packageThermalDesignPower = "thermal_design_power"
packageTurboLimit = "max_turbo_frequency"
percentageMultiplier = 100
)
// PowerStat plugin enables monitoring of platform metrics (power, TDP) and Core metrics like temperature, power and utilization.
type PowerStat struct {
CPUMetrics []string `toml:"cpu_metrics"`
PackageMetrics []string `toml:"package_metrics"`
Log telegraf.Logger `toml:"-"`
fs fileService
rapl raplService
msr msrService
cpuFrequency bool
cpuBusyFrequency bool
cpuTemperature bool
cpuC0StateResidency bool
cpuC1StateResidency bool
cpuC6StateResidency bool
cpuBusyCycles bool
packageTurboLimit bool
packageCurrentPowerConsumption bool
packageCurrentDramPowerConsumption bool
packageThermalDesignPower bool
cpuInfo map[string]*cpuInfo
skipFirstIteration bool
logOnce map[string]error
}
// Init performs one time setup of the plugin
func (p *PowerStat) Init() error {
p.parsePackageMetricsConfig()
p.parseCPUMetricsConfig()
err := p.verifyProcessor()
if err != nil {
return err
}
// Initialize MSR service only when there is at least one metric enabled
if p.cpuFrequency || p.cpuBusyFrequency || p.cpuTemperature || p.cpuC0StateResidency || p.cpuC1StateResidency ||
p.cpuC6StateResidency || p.cpuBusyCycles || p.packageTurboLimit {
p.msr = newMsrServiceWithFs(p.Log, p.fs)
}
if p.packageCurrentPowerConsumption || p.packageCurrentDramPowerConsumption || p.packageThermalDesignPower || p.packageTurboLimit {
p.rapl = newRaplServiceWithFs(p.Log, p.fs)
}
if !p.areCoreMetricsEnabled() && !p.areGlobalMetricsEnabled() {
return fmt.Errorf("all configuration options are empty or invalid. Did not find anything to gather")
}
return nil
}
// Gather takes in an accumulator and adds the metrics that the Input gathers
func (p *PowerStat) Gather(acc telegraf.Accumulator) error {
if p.areGlobalMetricsEnabled() {
p.addGlobalMetrics(acc)
}
if p.areCoreMetricsEnabled() {
p.addPerCoreMetrics(acc)
}
// Gathering the first iteration of metrics was skipped for most of them because they are based on delta calculations
p.skipFirstIteration = false
return nil
}
func (p *PowerStat) addGlobalMetrics(acc telegraf.Accumulator) {
// Prepare RAPL data each gather because there is a possibility to disable rapl kernel module
p.rapl.initializeRaplData()
for socketID := range p.rapl.getRaplData() {
if p.packageTurboLimit {
p.addTurboRatioLimit(socketID, acc)
}
err := p.rapl.retrieveAndCalculateData(socketID)
if err != nil {
// In case of an error skip calculating metrics for this socket
if val := p.logOnce[socketID]; val == nil || val.Error() != err.Error() {
p.Log.Errorf("error fetching rapl data for socket %s, err: %v", socketID, err)
// Remember that specific error occurs for socketID to omit logging next time
p.logOnce[socketID] = err
}
continue
}
// If error stops occurring, clear logOnce indicator
p.logOnce[socketID] = nil
if p.packageThermalDesignPower {
p.addThermalDesignPowerMetric(socketID, acc)
}
if p.skipFirstIteration {
continue
}
if p.packageCurrentPowerConsumption {
p.addCurrentSocketPowerConsumption(socketID, acc)
}
if p.packageCurrentDramPowerConsumption {
p.addCurrentDramPowerConsumption(socketID, acc)
}
}
}
func (p *PowerStat) addThermalDesignPowerMetric(socketID string, acc telegraf.Accumulator) {
maxPower, err := p.rapl.getConstraintMaxPowerWatts(socketID)
if err != nil {
p.Log.Errorf("error while retrieving TDP of the socket %s, err: %v", socketID, err)
return
}
tags := map[string]string{
"package_id": socketID,
}
fields := map[string]interface{}{
"thermal_design_power_watts": roundFloatToNearestTwoDecimalPlaces(maxPower),
}
acc.AddGauge("powerstat_package", fields, tags)
}
func (p *PowerStat) addCurrentSocketPowerConsumption(socketID string, acc telegraf.Accumulator) {
tags := map[string]string{
"package_id": socketID,
}
fields := map[string]interface{}{
"current_power_consumption_watts": roundFloatToNearestTwoDecimalPlaces(p.rapl.getRaplData()[socketID].socketCurrentEnergy),
}
acc.AddGauge("powerstat_package", fields, tags)
}
func (p *PowerStat) addCurrentDramPowerConsumption(socketID string, acc telegraf.Accumulator) {
tags := map[string]string{
"package_id": socketID,
}
fields := map[string]interface{}{
"current_dram_power_consumption_watts": roundFloatToNearestTwoDecimalPlaces(p.rapl.getRaplData()[socketID].dramCurrentEnergy),
}
acc.AddGauge("powerstat_package", fields, tags)
}
func (p *PowerStat) addPerCoreMetrics(acc telegraf.Accumulator) {
var wg sync.WaitGroup
wg.Add(len(p.msr.getCPUCoresData()))
for cpuID := range p.msr.getCPUCoresData() {
go p.addMetricsForSingleCore(cpuID, acc, &wg)
}
wg.Wait()
}
func (p *PowerStat) addMetricsForSingleCore(cpuID string, acc telegraf.Accumulator, wg *sync.WaitGroup) {
defer wg.Done()
if p.cpuFrequency {
p.addCPUFrequencyMetric(cpuID, acc)
}
// Read data from MSR only if required
if p.cpuC0StateResidency || p.cpuC1StateResidency || p.cpuC6StateResidency || p.cpuBusyCycles || p.cpuTemperature || p.cpuBusyFrequency {
err := p.msr.openAndReadMsr(cpuID)
if err != nil {
// In case of an error exit the function. All metrics past this point are dependent on MSR
p.Log.Debugf("error while reading msr: %v", err)
return
}
}
if p.cpuTemperature {
p.addCPUTemperatureMetric(cpuID, acc)
}
// cpuBusyFrequency metric does some calculations inside that are required in another plugin cycle
if p.cpuBusyFrequency {
p.addCPUBusyFrequencyMetric(cpuID, acc)
}
if !p.skipFirstIteration {
if p.cpuC0StateResidency || p.cpuBusyCycles {
p.addCPUC0StateResidencyMetric(cpuID, acc)
}
if p.cpuC1StateResidency {
p.addCPUC1StateResidencyMetric(cpuID, acc)
}
if p.cpuC6StateResidency {
p.addCPUC6StateResidencyMetric(cpuID, acc)
}
}
}
func (p *PowerStat) addCPUFrequencyMetric(cpuID string, acc telegraf.Accumulator) {
frequency, err := p.msr.retrieveCPUFrequencyForCore(cpuID)
// In case of an error leave func
if err != nil {
p.Log.Debugf("error while reading file: %v", err)
return
}
cpu := p.cpuInfo[cpuID]
tags := map[string]string{
"package_id": cpu.physicalID,
"core_id": cpu.coreID,
"cpu_id": cpu.cpuID,
}
fields := map[string]interface{}{
"cpu_frequency_mhz": roundFloatToNearestTwoDecimalPlaces(frequency),
}
acc.AddGauge("powerstat_core", fields, tags)
}
func (p *PowerStat) addCPUTemperatureMetric(cpuID string, acc telegraf.Accumulator) {
coresData := p.msr.getCPUCoresData()
temp := coresData[cpuID].throttleTemp - coresData[cpuID].temp
cpu := p.cpuInfo[cpuID]
tags := map[string]string{
"package_id": cpu.physicalID,
"core_id": cpu.coreID,
"cpu_id": cpu.cpuID,
}
fields := map[string]interface{}{
"cpu_temperature_celsius": temp,
}
acc.AddGauge("powerstat_core", fields, tags)
}
func calculateTurboRatioGroup(coreCounts uint64, msr uint64, group map[int]uint64) {
from := coreCounts & 0xFF // value of number of active cores of bucket 1 is written in the first 8 bits. The next buckets values are saved on the following 8-bit sides
for i := 0; i < 8; i++ {
to := (coreCounts >> (i * 8)) & 0xFF
if to == 0 {
break
}
value := (msr >> (i * 8)) & 0xFF
// value of freq ratio is stored in 8-bit blocks, and their real value is obtained after multiplication by 100
if value != 0 && to != 0 {
for ; from <= to; from++ {
group[int(from)] = value * 100
}
}
from = to + 1
}
}
func (p *PowerStat) addTurboRatioLimit(socketID string, acc telegraf.Accumulator) {
var err error
turboRatioLimitGroups := make(map[int]uint64)
var cpuID = ""
var model = ""
for _, v := range p.cpuInfo {
if v.physicalID == socketID {
cpuID = v.cpuID
model = v.model
}
}
if cpuID == "" || model == "" {
p.Log.Debugf("error while reading socket ID")
return
}
// dump_hsw_turbo_ratio_limit
if model == strconv.FormatInt(0x3F, 10) { // INTEL_FAM6_HASWELL_X
coreCounts := uint64(0x1211) // counting the number of active cores 17 and 18
msrTurboRatioLimit2, err := p.msr.readSingleMsr(cpuID, "MSR_TURBO_RATIO_LIMIT2")
if err != nil {
p.Log.Debugf("error while reading MSR_TURBO_RATIO_LIMIT2: %v", err)
return
}
calculateTurboRatioGroup(coreCounts, msrTurboRatioLimit2, turboRatioLimitGroups)
}
// dump_ivt_turbo_ratio_limit
if (model == strconv.FormatInt(0x3E, 10)) || // INTEL_FAM6_IVYBRIDGE_X
(model == strconv.FormatInt(0x3F, 10)) { // INTEL_FAM6_HASWELL_X
coreCounts := uint64(0x100F0E0D0C0B0A09) // counting the number of active cores 9 to 16
msrTurboRatioLimit1, err := p.msr.readSingleMsr(cpuID, "MSR_TURBO_RATIO_LIMIT1")
if err != nil {
p.Log.Debugf("error while reading MSR_TURBO_RATIO_LIMIT1: %v", err)
return
}
calculateTurboRatioGroup(coreCounts, msrTurboRatioLimit1, turboRatioLimitGroups)
}
if (model != strconv.FormatInt(0x37, 10)) && // INTEL_FAM6_ATOM_SILVERMONT
(model != strconv.FormatInt(0x4A, 10)) && // INTEL_FAM6_ATOM_SILVERMONT_MID:
(model != strconv.FormatInt(0x5A, 10)) && // INTEL_FAM6_ATOM_AIRMONT_MID:
(model != strconv.FormatInt(0x2E, 10)) && // INTEL_FAM6_NEHALEM_EX
(model != strconv.FormatInt(0x2F, 10)) && // INTEL_FAM6_WESTMERE_EX
(model != strconv.FormatInt(0x57, 10)) && // INTEL_FAM6_XEON_PHI_KNL
(model != strconv.FormatInt(0x85, 10)) { // INTEL_FAM6_XEON_PHI_KNM
coreCounts := uint64(0x0807060504030201) // default value (counting the number of active cores 1 to 8). May be changed in "if" segment below
if (model == strconv.FormatInt(0x5C, 10)) || // INTEL_FAM6_ATOM_GOLDMONT
(model == strconv.FormatInt(0x55, 10)) || // INTEL_FAM6_SKYLAKE_X
(model == strconv.FormatInt(0x6C, 10) || model == strconv.FormatInt(0x8F, 10) || model == strconv.FormatInt(0x6A, 10)) || // INTEL_FAM6_ICELAKE_X
(model == strconv.FormatInt(0x5F, 10)) || // INTEL_FAM6_ATOM_GOLDMONT_D
(model == strconv.FormatInt(0x86, 10)) { // INTEL_FAM6_ATOM_TREMONT_D
coreCounts, err = p.msr.readSingleMsr(cpuID, "MSR_TURBO_RATIO_LIMIT1")
if err != nil {
p.Log.Debugf("error while reading MSR_TURBO_RATIO_LIMIT1: %v", err)
return
}
}
msrTurboRatioLimit, err := p.msr.readSingleMsr(cpuID, "MSR_TURBO_RATIO_LIMIT")
if err != nil {
p.Log.Debugf("error while reading MSR_TURBO_RATIO_LIMIT: %v", err)
return
}
calculateTurboRatioGroup(coreCounts, msrTurboRatioLimit, turboRatioLimitGroups)
}
// dump_atom_turbo_ratio_limits
if model == strconv.FormatInt(0x37, 10) || // INTEL_FAM6_ATOM_SILVERMONT
model == strconv.FormatInt(0x4A, 10) || // INTEL_FAM6_ATOM_SILVERMONT_MID:
model == strconv.FormatInt(0x5A, 10) { // INTEL_FAM6_ATOM_AIRMONT_MID
coreCounts := uint64(0x04030201) // counting the number of active cores 1 to 4
msrTurboRatioLimit, err := p.msr.readSingleMsr(cpuID, "MSR_ATOM_CORE_TURBO_RATIOS")
if err != nil {
p.Log.Debugf("error while reading MSR_ATOM_CORE_TURBO_RATIOS: %v", err)
return
}
value := uint64(0)
newValue := uint64(0)
for i := 0; i < 4; i++ { // value "4" is specific for this group of processors
newValue = (msrTurboRatioLimit >> (8 * (i))) & 0x3F // value of freq ratio is stored in 6-bit blocks, saved every 8 bits
value = value + (newValue << ((i - 1) * 8)) // now value of freq ratio is stored in 8-bit blocks, saved every 8 bits
}
calculateTurboRatioGroup(coreCounts, value, turboRatioLimitGroups)
}
// dump_knl_turbo_ratio_limits
if model == strconv.FormatInt(0x57, 10) { // INTEL_FAM6_XEON_PHI_KNL
msrTurboRatioLimit, err := p.msr.readSingleMsr(cpuID, "MSR_TURBO_RATIO_LIMIT")
if err != nil {
p.Log.Debugf("error while reading MSR_TURBO_RATIO_LIMIT: %v", err)
return
}
// value of freq ratio of bucket 1 is saved in bits 15 to 8.
// each next value is calculated as the previous value - delta. Delta is stored in 3-bit blocks every 8 bits (start at 21 (2*8+5))
value := (msrTurboRatioLimit >> 8) & 0xFF
newValue := value
for i := 2; i < 8; i++ {
newValue = newValue - (msrTurboRatioLimit>>(8*i+5))&0x7
value = value + (newValue << ((i - 1) * 8))
}
// value of number of active cores of bucket 1 is saved in bits 1 to 7.
// each next value is calculated as the previous value + delta. Delta is stored in 5-bit blocks every 8 bits (start at 16 (2*8))
coreCounts := (msrTurboRatioLimit & 0xFF) >> 1
newBucket := coreCounts
for i := 2; i < 8; i++ {
newBucket = newBucket + (msrTurboRatioLimit>>(8*i))&0x1F
coreCounts = coreCounts + (newBucket << ((i - 1) * 8))
}
calculateTurboRatioGroup(coreCounts, value, turboRatioLimitGroups)
}
for key, val := range turboRatioLimitGroups {
tags := map[string]string{
"package_id": socketID,
"active_cores": strconv.Itoa(key),
}
fields := map[string]interface{}{
"max_turbo_frequency_mhz": val,
}
acc.AddGauge("powerstat_package", fields, tags)
}
}
func (p *PowerStat) addCPUBusyFrequencyMetric(cpuID string, acc telegraf.Accumulator) {
coresData := p.msr.getCPUCoresData()
mperfDelta := coresData[cpuID].mperfDelta
// Avoid division by 0
if mperfDelta == 0 {
p.Log.Errorf("mperf delta should not equal 0 on core %s", cpuID)
return
}
aperfMperf := float64(coresData[cpuID].aperfDelta) / float64(mperfDelta)
tsc := convertProcessorCyclesToHertz(coresData[cpuID].timeStampCounterDelta)
timeNow := time.Now().UnixNano()
interval := convertNanoSecondsToSeconds(timeNow - coresData[cpuID].readDate)
coresData[cpuID].readDate = timeNow
if p.skipFirstIteration {
return
}
if interval == 0 {
p.Log.Errorf("interval between last two Telegraf cycles is 0")
return
}
busyMhzValue := roundFloatToNearestTwoDecimalPlaces(tsc * aperfMperf / interval)
cpu := p.cpuInfo[cpuID]
tags := map[string]string{
"package_id": cpu.physicalID,
"core_id": cpu.coreID,
"cpu_id": cpu.cpuID,
}
fields := map[string]interface{}{
"cpu_busy_frequency_mhz": busyMhzValue,
}
acc.AddGauge("powerstat_core", fields, tags)
}
func (p *PowerStat) addCPUC1StateResidencyMetric(cpuID string, acc telegraf.Accumulator) {
coresData := p.msr.getCPUCoresData()
timestampDeltaBig := new(big.Int).SetUint64(coresData[cpuID].timeStampCounterDelta)
// Avoid division by 0
if timestampDeltaBig.Sign() < 1 {
p.Log.Errorf("timestamp delta value %v should not be lower than 1", timestampDeltaBig)
return
}
// Since counter collection is not atomic it may happen that sum of C0, C1, C3, C6 and C7
// is bigger value than TSC, in such case C1 residency shall be set to 0.
// Operating on big.Int to avoid overflow
mperfDeltaBig := new(big.Int).SetUint64(coresData[cpuID].mperfDelta)
c3DeltaBig := new(big.Int).SetUint64(coresData[cpuID].c3Delta)
c6DeltaBig := new(big.Int).SetUint64(coresData[cpuID].c6Delta)
c7DeltaBig := new(big.Int).SetUint64(coresData[cpuID].c7Delta)
c1Big := new(big.Int).Sub(timestampDeltaBig, mperfDeltaBig)
c1Big.Sub(c1Big, c3DeltaBig)
c1Big.Sub(c1Big, c6DeltaBig)
c1Big.Sub(c1Big, c7DeltaBig)
if c1Big.Sign() < 0 {
c1Big = c1Big.SetInt64(0)
}
c1Value := roundFloatToNearestTwoDecimalPlaces(percentageMultiplier * float64(c1Big.Uint64()) / float64(timestampDeltaBig.Uint64()))
cpu := p.cpuInfo[cpuID]
tags := map[string]string{
"package_id": cpu.physicalID,
"core_id": cpu.coreID,
"cpu_id": cpu.cpuID,
}
fields := map[string]interface{}{
"cpu_c1_state_residency_percent": c1Value,
}
acc.AddGauge("powerstat_core", fields, tags)
}
func (p *PowerStat) addCPUC6StateResidencyMetric(cpuID string, acc telegraf.Accumulator) {
coresData := p.msr.getCPUCoresData()
// Avoid division by 0
if coresData[cpuID].timeStampCounterDelta == 0 {
p.Log.Errorf("timestamp counter on offset %s should not equal 0 on cpuID %s",
timestampCounterLocation, cpuID)
return
}
c6Value := roundFloatToNearestTwoDecimalPlaces(percentageMultiplier *
float64(coresData[cpuID].c6Delta) / float64(coresData[cpuID].timeStampCounterDelta))
cpu := p.cpuInfo[cpuID]
tags := map[string]string{
"package_id": cpu.physicalID,
"core_id": cpu.coreID,
"cpu_id": cpu.cpuID,
}
fields := map[string]interface{}{
"cpu_c6_state_residency_percent": c6Value,
}
acc.AddGauge("powerstat_core", fields, tags)
}
func (p *PowerStat) addCPUC0StateResidencyMetric(cpuID string, acc telegraf.Accumulator) {
coresData := p.msr.getCPUCoresData()
// Avoid division by 0
if coresData[cpuID].timeStampCounterDelta == 0 {
p.Log.Errorf("timestamp counter on offset %s should not equal 0 on cpuID %s",
timestampCounterLocation, cpuID)
return
}
c0Value := roundFloatToNearestTwoDecimalPlaces(percentageMultiplier *
float64(coresData[cpuID].mperfDelta) / float64(coresData[cpuID].timeStampCounterDelta))
cpu := p.cpuInfo[cpuID]
tags := map[string]string{
"package_id": cpu.physicalID,
"core_id": cpu.coreID,
"cpu_id": cpu.cpuID,
}
if p.cpuC0StateResidency {
fields := map[string]interface{}{
"cpu_c0_state_residency_percent": c0Value,
}
acc.AddGauge("powerstat_core", fields, tags)
}
if p.cpuBusyCycles {
deprecatedFields := map[string]interface{}{
"cpu_busy_cycles_percent": c0Value,
}
acc.AddGauge("powerstat_core", deprecatedFields, tags)
}
}
func (p *PowerStat) parsePackageMetricsConfig() {
if p.PackageMetrics == nil {
// if Package Metric config is empty, use the default settings.
p.packageCurrentPowerConsumption = true
p.packageCurrentDramPowerConsumption = true
p.packageThermalDesignPower = true
return
}
if contains(p.PackageMetrics, packageTurboLimit) {
p.packageTurboLimit = true
}
if contains(p.PackageMetrics, packageCurrentPowerConsumption) {
p.packageCurrentPowerConsumption = true
}
if contains(p.PackageMetrics, packageCurrentDramPowerConsumption) {
p.packageCurrentDramPowerConsumption = true
}
if contains(p.PackageMetrics, packageThermalDesignPower) {
p.packageThermalDesignPower = true
}
}
func (p *PowerStat) parseCPUMetricsConfig() {
if len(p.CPUMetrics) == 0 {
return
}
if contains(p.CPUMetrics, cpuFrequency) {
p.cpuFrequency = true
}
if contains(p.CPUMetrics, cpuC0StateResidency) {
p.cpuC0StateResidency = true
}
if contains(p.CPUMetrics, cpuC1StateResidency) {
p.cpuC1StateResidency = true
}
if contains(p.CPUMetrics, cpuC6StateResidency) {
p.cpuC6StateResidency = true
}
if contains(p.CPUMetrics, cpuBusyCycles) {
p.cpuBusyCycles = true
}
if contains(p.CPUMetrics, cpuBusyFrequency) {
p.cpuBusyFrequency = true
}
if contains(p.CPUMetrics, cpuTemperature) {
p.cpuTemperature = true
}
}
func (p *PowerStat) verifyProcessor() error {
allowedProcessorModelsForC1C6 := []int64{0x37, 0x4D, 0x5C, 0x5F, 0x7A, 0x4C, 0x86, 0x96, 0x9C,
0x1A, 0x1E, 0x1F, 0x2E, 0x25, 0x2C, 0x2F, 0x2A, 0x2D, 0x3A, 0x3E, 0x4E, 0x5E, 0x55, 0x8E,
0x9E, 0x6A, 0x6C, 0x7D, 0x7E, 0x9D, 0x3C, 0x3F, 0x45, 0x46, 0x3D, 0x47, 0x4F, 0x56,
0x66, 0x57, 0x85, 0xA5, 0xA6, 0x8F, 0x8C, 0x8D}
stats, err := p.fs.getCPUInfoStats()
if err != nil {
return err
}
p.cpuInfo = stats
// First CPU is sufficient for verification
firstCPU := p.cpuInfo["0"]
if firstCPU == nil {
return fmt.Errorf("first core not found while parsing /proc/cpuinfo")
}
if firstCPU.vendorID != "GenuineIntel" || firstCPU.cpuFamily != "6" {
return fmt.Errorf("Intel processor not found, vendorId: %s", firstCPU.vendorID)
}
if !contains(convertIntegerArrayToStringArray(allowedProcessorModelsForC1C6), firstCPU.model) {
p.cpuC1StateResidency = false
p.cpuC6StateResidency = false
}
if !strings.Contains(firstCPU.flags, "msr") {
p.cpuTemperature = false
p.cpuC6StateResidency = false
p.cpuC0StateResidency = false
p.cpuBusyCycles = false
p.cpuBusyFrequency = false
p.cpuC1StateResidency = false
}
if !strings.Contains(firstCPU.flags, "aperfmperf") {
p.cpuBusyCycles = false
p.cpuBusyFrequency = false
p.cpuC0StateResidency = false
p.cpuC1StateResidency = false
}
if !strings.Contains(firstCPU.flags, "dts") {
p.cpuTemperature = false
}
return nil
}
func contains(slice []string, str string) bool {
for _, v := range slice {
if v == str {
return true
}
}
return false
}
func (p *PowerStat) areCoreMetricsEnabled() bool {
return p.msr != nil && len(p.msr.getCPUCoresData()) > 0
}
func (p *PowerStat) areGlobalMetricsEnabled() bool {
return p.rapl != nil
}
// newPowerStat creates and returns PowerStat struct
func newPowerStat(fs fileService) *PowerStat {
p := &PowerStat{
cpuFrequency: false,
cpuC0StateResidency: false,
cpuC1StateResidency: false,
cpuC6StateResidency: false,
cpuBusyCycles: false,
cpuTemperature: false,
cpuBusyFrequency: false,
packageTurboLimit: false,
packageCurrentPowerConsumption: false,
packageCurrentDramPowerConsumption: false,
packageThermalDesignPower: false,
skipFirstIteration: true,
fs: fs,
logOnce: make(map[string]error),
}
return p
}
func init() {
inputs.Add("intel_powerstat", func() telegraf.Input {
return newPowerStat(newFileService())
})
}