Add Starlark script for estimating Line Protocol cardinality (#8852)

This commit is contained in:
Sam Dillard 2021-03-02 13:55:27 -08:00 committed by GitHub
parent 15d45ec0bf
commit 30a0fd04cd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 84 additions and 0 deletions

View File

@ -0,0 +1,84 @@
# Produces a new Line of statistics about the Fields
# Drops the original metric
#
# Example Input:
# logstash,environment_id=EN456,property_id=PR789,request_type=ingress,stack_id=engd asn=1313i,cache_response_code=202i,colo_code="LAX",colo_id=12i,compute_time=28736i,edge_end_timestamp=1611085500320i,edge_start_timestamp=1611085496208i,id="1b5c67ed-dfd0-4d30-99bd-84f0a9c5297b_76af1809-29d1-4b35-a0cf-39797458275c",parent_ray_id="00",processing_details="ok",rate_limit_id=0i,ray_id="76af1809-29d1-4b35-a0cf-39797458275c",request_bytes=7777i,request_host="engd-08364a825824e04f0a494115.reactorstream.dev",request_id="1b5c67ed-dfd0-4d30-99bd-84f0a9c5297b",request_result="succeeded",request_uri="/ENafcb2798a9be4bb7bfddbf35c374db15",response_code=200i,subrequest=false,subrequest_count=1i,user_agent="curl/7.64.1" 1611085496208
#
# Example Output:
# sizing,measurement=logstash,environment_id=EN456,property_id=PR789,request_type=ingress,stack_id=engd tag_count=4,tag_key_avg_length=11.25,tag_value_avg_length=5.25,int_avg_length=4.9,int_count=10,bool_avg_length=5,bool_count=1,str_avg_length=25.4,str_count=10 1611085496208
def apply(metric):
new_metric = Metric("sizing")
num_tags = len(metric.tags.items())
new_metric.fields["tag_count"] = float(num_tags)
new_metric.fields["tag_key_avg_length"] = sum(map(len, metric.tags.keys())) / num_tags
new_metric.fields["tag_value_avg_length"] = sum(map(len, metric.tags.values())) / num_tags
new_metric.tags["measurement"] = metric.name
new_metric.tags.update(metric.tags)
ints, floats, bools, strs = [], [], [], []
for field in metric.fields.items():
value = field[1]
if type(value) == "int":
ints.append(field)
elif type(value) == "float":
floats.append(field)
elif type(value) == "bool":
bools.append(field)
elif type(value) == "string":
strs.append(field)
if len(ints) > 0:
int_vals = [i[1] for i in ints]
produce_pairs(new_metric, int_vals, "int")
if len(floats) > 0:
float_vals = [i[1] for i in floats]
produce_pairs(new_metric, float_vals, "float")
if len(bools) > 0:
bool_vals = [i[1] for i in bools]
produce_pairs(new_metric, bool_vals, "bool")
if len(strs) > 0:
str_vals = [i[1] for i in strs]
produce_pairs(new_metric, str_vals, "str")
return new_metric
def produce_pairs(metric, li, field_type):
lens = elem_lengths(li)
counts = count_lengths(lens)
metric.fields["{}_avg_length".format(field_type)] = float(mean(lens))
metric.fields["{}_count".format(field_type)] = float(len(li))
def elem_lengths(li):
if type(li[0]) in ("int", "float", "bool"):
return [len(str(elem)) for elem in li]
else:
return [len(elem) for elem in li]
def count_lengths(li):
# Returns dict of counts of each occurrence of length in a list of lengths
lens = []
counts = []
for elem in li:
if elem not in lens:
lens.append(elem)
counts.append(1)
else:
index = lens.index(elem)
counts[index] += 1
return dict(zip(lens, counts))
def map(f, li):
return [f(x) for x in li]
def sum(li):
sum = 0
for i in li:
sum += i
return sum
def mean(li):
return sum(li)/len(li)