telegraf/plugins/parsers/phasor_binary/parser.go

210 lines
5.5 KiB
Go

package binary_phasor
import (
"encoding/binary"
"errors"
"math"
"strconv"
"strings"
"time"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/metric"
"github.com/influxdata/telegraf/plugins/parsers"
)
// Parser adheres to the parser interface, contains the parser configuration, and data required to parse binary_phasor
type Parser struct {
Log telegraf.Logger
// // measurement is the name of the current config used in each line protocol
// measurement string
// // parseMutex is here because Parse() is not threadsafe. If it is made threadsafe at some point, then we won't need it anymore.
// parseMutex sync.Mutex
// pointFrequency data point frequency in one second
pointFrequency int
defaultMetricName string
}
const (
deviceTypeI = 0x01
deviceTypeU = 0x02
dataLengthI = 11306
dataLengthU = 14106
)
const (
ycPrefix = "tm"
yxPrefix = "ts"
)
func (p *Parser) Init() error {
p.pointFrequency = 50
return nil
}
func (p *Parser) Parse(data []byte, topic string) ([]telegraf.Metric, error) {
metrics, deviceType, err := p.checkHeaderAndInitMetrics(data, topic)
if err != nil {
return nil, err
}
p.fillAnalogChanMetrics(metrics, data, 6)
p.fillSwitchChanMetrics(metrics, data, 9606)
switch deviceType {
case deviceTypeI:
p.fillPQSPFChanMetrics(metrics, data, 9706)
case deviceTypeU:
p.fillFdFChanMetrics(metrics, data, 9706)
p.fillUABUBCUCAChanMetrics(metrics, data, 10506)
default:
return nil, errors.New("illegal device type")
}
return metrics, nil
}
func (p *Parser) ParseLine(line string) (telegraf.Metric, error) {
return nil, errors.New("not implemented")
}
func (p *Parser) SetDefaultTags(tags map[string]string) {
}
func init() {
// Register all variants
parsers.Add("phasor_binary",
func(defaultMetricName string) telegraf.Parser {
return &Parser{defaultMetricName: defaultMetricName}
},
)
}
// simply check the data, and initialize metrics with data and topic
func (p *Parser) checkHeaderAndInitMetrics(data []byte, topic string) ([]telegraf.Metric, int, error) {
if len(data) < 6 {
return nil, 0, errors.New("no valid data")
}
second := int64(binary.LittleEndian.Uint32(data[:4]))
deviceType := int(data[4])
metrics := make([]telegraf.Metric, p.pointFrequency)
device, _ := strings.CutSuffix(topic, "_Phasor")
switch deviceType {
case deviceTypeI:
if len(data) < dataLengthI {
return nil, 0, errors.New("illegal current data length")
}
if data[5] != 0x0e { // 14, current channel number
return nil, 0, errors.New("illegal current channel number")
}
for i := range metrics {
metrics[i] = metric.New("current",
map[string]string{"device": device},
make(map[string]any, 44), // 3*8+2*8+4
time.Unix(second, int64(i*1e9/p.pointFrequency)))
}
case deviceTypeU:
if len(data) < dataLengthU {
return nil, 0, errors.New("illegal voltage data length")
}
if data[5] != 0x0f { // 15, voltage channel number
return nil, 0, errors.New("illegal voltage channel number")
}
for i := range metrics {
metrics[i] = metric.New("voltage",
map[string]string{"device": device},
make(map[string]any, 51), // 3*8+2*8+2+3*3
time.Unix(second, int64(i*1e9/p.pointFrequency)))
}
default:
return nil, 0, errors.New("illegal device type")
}
return metrics, deviceType, nil
}
// yc metrics
func (p *Parser) fillAnalogChanMetrics(metrics []telegraf.Metric, data []byte, begin int) {
for ci := range 8 {
chanNo := strconv.Itoa(ci + 1)
for mj := range metrics {
b := begin + (ci*p.pointFrequency+mj)*24
amp := math.Float64frombits(binary.LittleEndian.Uint64(data[b : b+8]))
pa := math.Float64frombits(binary.LittleEndian.Uint64(data[b+8 : b+16]))
rms := math.Float64frombits(binary.LittleEndian.Uint64(data[b+16 : b+24]))
metrics[mj].AddField(ycPrefix+chanNo+"_amp", amp)
metrics[mj].AddField(ycPrefix+chanNo+"_pa", pa)
metrics[mj].AddField(ycPrefix+chanNo+"_rms", rms)
}
}
}
// yx metrics
func (p *Parser) fillSwitchChanMetrics(metrics []telegraf.Metric, data []byte, begin int) {
for ci := range 2 {
for mj := range metrics {
b := begin + ci*p.pointFrequency + mj
for bk := range 8 {
chanNo := strconv.Itoa(ci*8 + bk + 1)
metrics[mj].AddField(yxPrefix+chanNo, uint8((data[b]>>bk)&1))
}
}
}
}
// current relative metrics
func (p *Parser) fillPQSPFChanMetrics(metrics []telegraf.Metric, data []byte, begin int) {
for ci, channel := range []string{"p", "q", "s", "pf"} {
for mj := range metrics {
b := begin + (ci*p.pointFrequency+mj)*8
metrics[mj].AddField(channel, math.Float64frombits(binary.LittleEndian.Uint64(data[b:b+8])))
}
}
}
// voltage relative metrics
func (p *Parser) fillFdFChanMetrics(metrics []telegraf.Metric, data []byte, begin int) {
for ci, channel := range []string{"f", "df"} {
for mj := range metrics {
b := begin + (ci*p.pointFrequency+mj)*8
metrics[mj].AddField(channel, math.Float64frombits(binary.LittleEndian.Uint64(data[b:b+8])))
}
}
}
// voltage metrics
func (p *Parser) fillUABUBCUCAChanMetrics(metrics []telegraf.Metric, data []byte, begin int) {
for ci, channel := range []string{"uab", "ubc", "uca"} {
for mj := range metrics {
b := begin + (ci*p.pointFrequency+mj)*24
amp := math.Float64frombits(binary.LittleEndian.Uint64(data[b : b+8]))
pa := math.Float64frombits(binary.LittleEndian.Uint64(data[b+8 : b+16]))
rms := math.Float64frombits(binary.LittleEndian.Uint64(data[b+16 : b+24]))
metrics[mj].AddField(channel+"_amp", amp)
metrics[mj].AddField(channel+"_pa", pa)
metrics[mj].AddField(channel+"_rms", rms)
}
}
}